The KdV–Burgers equation in speed gradient viscous continuum model
Hong-Xia Ge and
Siu-ming Lo
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 4, 1652-1656
Abstract:
Based on the microscopic two velocity difference model, a macroscopic model called speed viscous continuum model is developed to describe traffic flow. The relative velocities are added to the motion equation, which leads to viscous effects in continuum model. The viscous continuum model overcomes the backward travel problem, which exists in many higher-order continuum models. Nonlinear analysis shows that the density fluctuation in traffic flow leads to density waves. Near the onset of instability, a small disturbance could lead to solitons described by the Korteweg–de Vries–Burgers (KdV–Burgers) equation, which is seldom found in other traffic flow models, and the soliton solution is derived.
Keywords: Traffic flow; Viscous continuum model; KdV-Burgers equation (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111007941
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:4:p:1652-1656
DOI: 10.1016/j.physa.2011.10.014
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().