Efficient algorithm based on neighborhood overlap for community identification in complex networks
Kun Li,
Xiaofeng Gong,
Shuguang Guan and
C.-H. Lai
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 4, 1788-1796
Abstract:
Community structure is an important feature in many real-world networks. Many methods and algorithms for identifying communities have been proposed and have attracted great attention in recent years. In this paper, we present a new approach for discovering the community structure in networks. The novelty is that the algorithm uses the strength of the ties for sorting out nodes into communities. More specifically, we use the principle of weak ties hypothesis to determine to what community the node belongs. The advantages of this method are its simplicity, accuracy, and low computational cost. We demonstrate the effectiveness and efficiency of our algorithm both on real-world networks and on benchmark graphs. We also show that the distribution of link strength can give a general view of the basic structure information of graphs.
Keywords: Complex networks; Community identification; Weak ties (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111007655
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:4:p:1788-1796
DOI: 10.1016/j.physa.2011.09.027
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().