Statistical mechanics of networks: Estimation and uncertainty
B.A. Desmarais and
S.J. Cranmer
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 4, 1865-1876
Abstract:
Exponential random graph models (ERGMs) are powerful tools for formulating theoretical models of network generation or learning the properties of empirical networks. They can be used to construct models that exactly reproduce network properties of interest. However, tuning these models correctly requires computationally intractable maximization of the probability of a network of interest—maximum likelihood estimation (MLE). We discuss methods of approximate MLE and show that, though promising, simulation based methods pose difficulties in application because it is not known how much simulation is required. An alternative to simulation methods, maximum pseudolikelihood estimation (MPLE), is deterministic and has known asymptotic properties, but standard methods of assessing uncertainty with MPLE perform poorly. We introduce a resampling method that greatly outperforms the standard approach to characterizing uncertainty with MPLE. We also introduce ERGMs for dynamic networks—temporal ERGM (TERGM). In an application to modeling cosponsorship networks in the United States Senate, we show how recently proposed methods for dynamic network modeling can be integrated into the TERGM framework, and how our resampling method can be used to characterize uncertainty about network dynamics.
Keywords: Networks; Dynamic network; ERGM; Bootstrap; Congress (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111008168
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:4:p:1865-1876
DOI: 10.1016/j.physa.2011.10.018
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().