Ground-state energy and entropy of the two-dimensional Edwards–Anderson spin-glass model with different bond distributions
D.J. Perez-Morelo,
A.J. Ramirez-Pastor and
F. Romá
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 4, 937-947
Abstract:
We study the two-dimensional Edwards–Anderson spin-glass model using a parallel tempering Monte Carlo algorithm. The ground-state energy and entropy are calculated for different bond distributions. In particular, the entropy is obtained by using a thermodynamic integration technique and an appropriate reference state, which is determined with the method of high-temperature expansion. This strategy provides accurate values of this quantity for finite-size lattices. By extrapolating to the thermodynamic limit, the ground-state energy and entropy of the different versions of the spin-glass model are determined.
Keywords: Spin-glass and other random models; Numerical simulation studies (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111007618
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:4:p:937-947
DOI: 10.1016/j.physa.2011.09.023
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().