EconPapers    
Economics at your fingertips  
 

An extended rational thermodynamics model for surface excess fluxes

Leonard M.C. Sagis

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 4, 979-990

Abstract: In this paper, we derive constitutive equations for the surface excess fluxes in multiphase systems, in the context of an extended rational thermodynamics formalism. This formalism allows us to derive Maxwell–Cattaneo type constitutive laws for the surface extra stress tensor, the surface thermal energy flux vector, and the surface mass flux vector, which incorporate a direct coupling to their corresponding bulk fluxes in the adjacent bulk phases. These constitutive laws also incorporate contributions to the time evolution of the surface excess fluxes from spatial inhomogeneities in these flux fields. These phenomenological equations can be used to model the dynamic behavior of complex viscoelastic interfaces in multiphase systems, in the small deformation limit.

Keywords: Surface extra stress tensor; Surface thermal energy flux vector; Surface mass flux vector; Extended rational thermodynamics (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111007837
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:4:p:979-990

DOI: 10.1016/j.physa.2011.10.004

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:4:p:979-990