EconPapers    
Economics at your fingertips  
 

Conductivity exponent in three-dimensional percolation by diffusion based on molecular trajectory algorithm and blind-ant rules

Wei Cen, Dongbing Liu and Bingquan Mao

Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 5, 1909-1918

Abstract: Diffusion on random systems above and at their percolation threshold in three dimensions is carried out by a molecular trajectory method and a simple lattice random walk method, respectively. The classical regimes of diffusion on percolation near the threshold are observed in our simulations by both methods. Our Monte Carlo simulations by the simple lattice random walk method give the conductivity exponent μ/ν=2.32±0.02 for diffusion on the incipient infinite clusters and μ/ν=2.21±0.03 for diffusion on a percolating lattice above the threshold. However, while diffusion is performed by the molecular trajectory algorithm either on the incipient infinite clusters or on a percolating lattice above the threshold, the result is found to be μ/ν=2.26±0.02. In addition, it takes less time step for diffusion based on the molecular trajectory algorithm to reach the asymptotic limit comparing with the simple lattice random walk.

Keywords: Conductivity exponent; Diffusion; Molecular trajectory algorithm; Blind-ant rules; Percolation; Convergence (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111008430
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:5:p:1909-1918

DOI: 10.1016/j.physa.2011.11.008

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:391:y:2012:i:5:p:1909-1918