A new model for ideal gases. Decay to the Maxwellian distribution
Elyas Shivanian and
Ricardo López-Ruiz
Physica A: Statistical Mechanics and its Applications, 2012, vol. 391, issue 8, 2600-2607
Abstract:
In this work, a new model in kinetic gas theory for deriving the Maxwellian velocity distribution (MVD) is proposed. We construct an operator that governs the discrete time evolution of the velocity distribution. This operator, which conserves the momentum and the energy of the ideal gas, has the MVD as a fixed point. Moreover, for any initial out-of-equilibrium velocity distribution, it is shown that the gas decays to the equilibrium distribution, that is, to the MVD.
Keywords: Gas theory; Maxwellian velocity distribution; Random models; Statistical equilibrium (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437111009770
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:391:y:2012:i:8:p:2600-2607
DOI: 10.1016/j.physa.2011.12.041
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().