Surface and bulk properties of ballistic deposition models with bond breaking
Juvenil S. Oliveira Filho,
Tiago J. Oliveira and
José Arnaldo Redinz
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 10, 2479-2486
Abstract:
We introduce a new class of growth models, with a surface restructuring mechanism in which impinging particles may dislodge suspended particles, previously aggregated on the same column in the deposit. The flux of these particles is controlled through a probability p. These systems present a crossover, for small values of p, from random to correlated (KPZ) growth of surface roughness, which is studied through scaling arguments and Monte Carlo simulations on one- and two-dimensional substrates. We show that the crossover characteristic time t× scales with p according to t×∼p−y with y=(n+1) and that the interface width at saturation Wsat scales as Wsat∼p−δ with δ=(n+1)/2, where n is either the maximal number of broken bonds or of dislodged suspended particles. This result shows that the sets of exponents y=1 and δ=1/2 or y=2 and δ=1 found in all previous works focusing on systems with this same type of crossover are not universal. Using scaling arguments, we show that the bulk porosity P of the deposits scales as P∼py−δ for small values of p. This general scaling relation is confirmed by our numerical simulations and explains previous results present in literature.
Keywords: Surface growth; Growth models; Roughness scaling; Porosity (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113001040
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:10:p:2479-2486
DOI: 10.1016/j.physa.2013.01.051
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().