Spreading of periodic diseases and synchronization phenomena on networks
M. Ababou,
N. Vandewalle,
N. Moussa,
M. El Bouziani and
F. Ludewig
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 10, 2526-2531
Abstract:
In this paper, we investigate numerically the Susceptible–Infected–Recovered–Susceptible (SIRS) epidemic model on an exponential network generated by a preferential attachment procedure. The discrete SIRS model considers two main parameters: the duration τ0 of the complete infection–recovery cycle and the duration τI of infection. A permanent source of infection I0 has also been introduced in order to avoid the vanishing of the disease in the SIRS model. The fraction of infected agents is found to oscillate with a period T≥τ0. Simulations reveal that the average fraction of infected agents depends on I0 and τI/τ0. A maximum of synchronization of infected agents, i.e. a maximum amplitude of periodic spreading oscillations, is found to occur when the ratio τI/τ0 is slightly smaller than 1/2. The model is in agreement with the general observation that an outbreak corresponds to high τI/τ0 values.
Keywords: Exponential network; Discrete SIRS model; Epidemic dynamics; Synchronization (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113001039
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:10:p:2526-2531
DOI: 10.1016/j.physa.2013.01.050
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().