Identifying influential nodes in weighted networks based on evidence theory
Daijun Wei,
Xinyang Deng,
Xiaoge Zhang,
Yong Deng and
Sankaran Mahadevan
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 10, 2564-2575
Abstract:
The design of an effective ranking method to identify influential nodes is an important problem in the study of complex networks. In this paper, a new centrality measure is proposed based on the Dempster–Shafer evidence theory. The proposed measure trades off between the degree and strength of every node in a weighted network. The influences of both the degree and the strength of each node are represented by basic probability assignment (BPA). The proposed centrality measure is determined by the combination of these BPAs. Numerical examples are used to illustrate the effectiveness of the proposed method.
Keywords: Complex networks; Influential nodes; Weighted network; Dempster–Shafer theory of evidence (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113001076
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:10:p:2564-2575
DOI: 10.1016/j.physa.2013.01.054
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().