The number of spanning trees of an infinite family of outerplanar, small-world and self-similar graphs
Francesc Comellas,
Alícia Miralles,
Hongxiao Liu and
Zhongzhi Zhang
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 12, 2803-2806
Abstract:
In this paper we give an exact analytical expression for the number of spanning trees of an infinite family of outerplanar, small-world and self-similar graphs. This number is an important graph invariant related to different topological and dynamic properties of the graph, such as its reliability, synchronization capability and diffusion properties. The calculation of the number of spanning trees is a demanding and difficult task, in particular for large graphs, and thus there is much interest in obtaining closed expressions for relevant infinite graph families. We have also calculated the spanning tree entropy of the graphs which we have compared with those for graphs with the same average degree.
Keywords: Spanning trees; Tree entropy; Complex networks; Self-similarity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113001775
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:12:p:2803-2806
DOI: 10.1016/j.physa.2012.10.047
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().