Coarse grained approach for volume conserving models
D. Hansmann and
R.C. Buceta
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 14, 3018-3027
Abstract:
Volume conserving surface (VCS) models without deposition and evaporation, as well as ideal molecular-beam epitaxy models, are prototypes to study the symmetries of conserved dynamics. In this work we study two similar VCS models with conserved noise, which differ from each other by the axial symmetry of their dynamic hopping rules. We use a coarse-grained approach to analyze the models and show how to determine the coefficients of their corresponding continuous stochastic differential equation (SDE) within the same universality class. The employed method makes use of small translations in a test space which contains the stationary probability density function (SPDF). In case of the symmetric model we calculate all the coarse-grained coefficients of the related conserved Kardar–Parisi–Zhang (KPZ) equation. With respect to the symmetric model, the asymmetric model adds new terms which have to be analyzed, first of all the diffusion term, whose coarse-grained coefficient can be determined by the same method. In contrast to other methods, the used formalism allows to calculate all coefficients of the SDE theoretically and within limits numerically. Above all, the used approach connects the coefficients of the SDE with the SPDF and hence gives them a precise physical meaning.
Keywords: Conserving volume models; Symmetric hopping rate; Asymmetric hopping rate; Coarse grained approach; Generalized functions; Test space (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113002379
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:14:p:3018-3027
DOI: 10.1016/j.physa.2013.03.020
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().