EconPapers    
Economics at your fingertips  
 

Detecting community structure using label propagation with weighted coherent neighborhood propinquity

Hao Lou, Shenghong Li and Yuxin Zhao

Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 14, 3095-3105

Abstract: Community detection has become an important methodology to understand the organization and function of various real-world networks. The label propagation algorithm (LPA) is an almost linear time algorithm proved to be effective in finding a good community structure. However, LPA has a limitation caused by its one-hop horizon. Specifically, each node in LPA adopts the label shared by most of its one-hop neighbors; much network topology information is lost in this process, which we believe is one of the main reasons for its instability and poor performance. Therefore in this paper we introduce a measure named weighted coherent neighborhood propinquity (weighted-CNP) to represent the probability that a pair of vertices are involved in the same community. In label update, a node adopts the label that has the maximum weighted-CNP instead of the one that is shared by most of its neighbors. We propose a dynamic and adaptive weighted-CNP called entropic-CNP by using the principal of entropy to modulate the weights. Furthermore, we propose a framework to integrate the weighted-CNP in other algorithms in detecting community structure. We test our algorithm on both computer-generated networks and real-world networks. The experimental results show that our algorithm is more robust and effective than LPA in large-scale networks.

Keywords: Community structure; Community detection; Label propagation; Coherent neighborhood propinquity (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113002173
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:14:p:3095-3105

DOI: 10.1016/j.physa.2013.03.014

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:392:y:2013:i:14:p:3095-3105