Predicting link directions via a recursive subgraph-based ranking
Fangjian Guo,
Zimo Yang and
Tao Zhou
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 16, 3402-3408
Abstract:
Link directions are essential to the functionality of networks and their prediction is helpful toward a better knowledge of directed networks from incomplete real-world data. We study the problem of predicting the directions of some links by using the existence and directions of the rest of links. We propose a solution by first ranking nodes in a specific order and then predicting each link as stemming from a lower-ranked node and pointing toward a higher-ranked one. The proposed ranking method works recursively by utilizing local indicators on multiple scales, each corresponding to a subgraph extracted from the original network. Experiments on real networks show that the directions of a substantial fraction of links can be correctly recovered by our method, which outperforms either purely local or global methods.
Keywords: Link prediction; Directed network; Ranking; Subgraph; Linear ordering problem (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113002422
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:16:p:3402-3408
DOI: 10.1016/j.physa.2013.03.025
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().