EconPapers    
Economics at your fingertips  
 

Crackling sound generation during the formation of liquid bridges: A lattice gas model

Alexandre B. Almeida, Sergey V. Buldyrev and Adriano M. Alencar

Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 16, 3409-3416

Abstract: Due to abnormal mechanical instabilities, liquid bridges may form in the small airways blocking airflow. Liquid bridge ruptures during inhalation are the major cause of the crackling adventitious lung sound, which can be heard using a simple stethoscope. Recently, Vyshedskiy and colleagues (2009) [1] described and characterized a crackle sound originated during expiration. However, the mechanism and origin of the expiratory crackle are still controversial. Thus, in this paper, we propose a mechanism for expiratory crackles. We hypothesize that the expiratory crackle sound is a result of the energy released in the form of acoustic waves during the formation of the liquid bridge. The magnitude of the energy released is proportional to the difference in free energy prior and after the bridge formation. We use a lattice gas model to describe the liquid bridge formation between two parallel planes. Specifically, we determine the surface free energy and the conditions of the liquid bridge formation between two parallel planes separated by a distance 2h by a liquid droplet of volume Ω and contact angle Θ, using both Monte Carlo simulation of a lattice gas model and variational calculus based on minimization of the surface area with the volume and the contact angle constrained. We numerically and analytically determine the phase diagram of the system as a function of the dimensionless parameter hΩ−1/3 and Θ. We can distinguish two different phases: one droplet and one liquid bridge. We observe a hysteresis curve for the energy changes between these two states, and a finite size effect in the bridge formation. We compute the release of free energy during the formation of the liquid bridge and discuss the results in terms of system size. We also calculate the force exerted from liquid bridge on the planes by studying the dependence of the free energy on the separation between the planes 2h. The simulation results are in agreement with the analytical solution.

Keywords: Crackle; Pots; Instabilities; Sound (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113002719
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:16:p:3409-3416

DOI: 10.1016/j.physa.2013.03.038

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:392:y:2013:i:16:p:3409-3416