Herd behaviour experimental testing in laboratory artificial stock market settings. Behavioural foundations of stylised facts of financial returns
Viktor Manahov and
Robert Hudson
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 19, 4351-4372
Abstract:
Many scholars express concerns that herding behaviour causes excess volatility, destabilises financial markets, and increases the likelihood of systemic risk. We use a special form of the Strongly Typed Genetic Programming (STGP) technique to evolve a stock market divided into two groups—a small subset of artificial agents called ‘Best Agents’ and a main cohort of agents named ‘All Agents’. The ‘Best Agents’ perform best in term of the trailing return of a wealth moving average. We then investigate whether herding behaviour can arise when agents trade Dow Jones, General Electric, and IBM financial instruments in four different artificial stock markets. This paper uses real historical quotes of the three financial instruments to analyse the behavioural foundations of stylised facts such as leptokurtosis, non-IIDness, and volatility clustering. We found evidence of more herding in a group of stocks than in individual stocks, but the magnitude of herding does not contribute to the mispricing of assets in the long run. Our findings suggest that the price formation process caused by the collective behaviour of the entire market exhibit less herding and is more efficient than the segmented market populated by a small subset of agents. Hence, greater genetic diversity leads to greater consistency with fundamental values and market efficiency.
Keywords: Agent-based modelling; Artificial stock market; Genetic programming; Herd behaviour stylised facts; Efficient market hypothesis (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113004524
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:19:p:4351-4372
DOI: 10.1016/j.physa.2013.05.029
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().