EconPapers    
Economics at your fingertips  
 

Mutually beneficial relationship in optimization between search-space smoothing and stochastic search

Manabu Hasegawa and Kotaro Hiramatsu

Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 19, 4491-4501

Abstract: The effectiveness of the Metropolis algorithm (MA) (constant-temperature simulated annealing) in optimization by the method of search-space smoothing (SSS) (potential smoothing) is studied on two types of random traveling salesman problems. The optimization mechanism of this hybrid approach (MASSS) is investigated by analyzing the exploration dynamics observed in the rugged landscape of the cost function (energy surface). The results show that the MA can be successfully utilized as a local search algorithm in the SSS approach. It is also clarified that the optimization characteristics of these two constituent methods are improved in a mutually beneficial manner in the MASSS run. Specifically, the relaxation dynamics generated by employing the MA work effectively even in a smoothed landscape and more advantage is taken of the guiding function proposed in the idea of SSS; this mechanism operates in an adaptive manner in the de-smoothing process and therefore the MASSS method maintains its optimization function over a wider temperature range than the MA.

Keywords: Optimization; Search-space smoothing; Metropolis algorithm; Traveling salesman problem; Relaxation dynamics (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113004603
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:19:p:4491-4501

DOI: 10.1016/j.physa.2013.05.037

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:392:y:2013:i:19:p:4491-4501