Structure and orientational ordering in a fluid of elongated quadrupolar molecules
Ram Chandra Singh
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 1, 48-57
Abstract:
A second-order density-functional theory is used to study the effect of quadrupolar interactions on the isotropic–nematic transition in a system of fluids of elongated molecules interacting via the Gay–Berne potential. The direct pair-correlation functions of the coexisting isotropic fluid that enter in the theory as input information are obtained by solving the Ornstein–Zernike equation using the Percus–Yevick integral equation theory in the (reduced) temperature range of 1.6≤T∗≤3.0 for different densities, temperatures and quadrupole moments. Using the harmonic coefficients of the direct pair-correlation functions, isotropic–nematic phase coexistence and thermodynamic parameters have been calculated. The theoretical results have been compared with the available computer simulation results.
Keywords: Gay–Berne potential; Quadrupole moments; Pair-correlation functions; Density-functional theory; Isotropic–nematic transition (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112007662
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:1:p:48-57
DOI: 10.1016/j.physa.2012.07.075
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().