Complementarity relation for irreversible processes near steady states
E.S. Santini,
M.F. Carusela and
E.D. Izquierdo
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 20, 4856-4867
Abstract:
A relation giving a minimum for the irreversible work in quasi-equilibrium processes was derived by Sekimoto et al. [K. Sekimoto, S. Sasa, J. Phys. Soc. Japan 66 (1997) 3326] in the framework of stochastic energetics. This relation can also be written as a type of “uncertainty principle” in such a way that the precise determination of the Helmholtz free energy through the observation of the work 〈W〉 requires an indefinitely large experimental time Δt. In the present article, we extend this relation to the case of quasi-steady processes by using the concept of non-equilibrium Helmholtz free energy. We give a formulation of the second law for these processes that extends that presented by Sekimoto [K. Sekimoto, Prog. Theoret. Phys. Suppl. No. 130 (1998) 17] by a term of the first order in the inverse of the experimental time. As an application of our results, two possible experimental situations are considered: stretching of a RNA molecule and the drag of a dipolar particle in the presence of a gradient of electric force.
Keywords: Stochastic energetics; Langevin equation; Thermodynamics; Fluctuation phenomena (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113005633
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:20:p:4856-4867
DOI: 10.1016/j.physa.2013.06.045
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().