EconPapers    
Economics at your fingertips  
 

Theoretical estimation of metabolic network robustness against multiple reaction knockouts using branching process approximation

Kazuhiro Takemoto, Takeyuki Tamura and Tatsuya Akutsu

Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 21, 5525-5535

Abstract: In our previous study, we showed that the branching process approximation is useful for estimating metabolic robustness, measured using the impact degree. By applying a theory of random family forests, we here extend the branching process approximation to consider the knockout of multiple reactions, inspired by the importance of multiple knockouts reported by recent computational and experimental studies. In addition, we propose a better definition of the number of offspring of each reaction node, allowing for an improved estimation of the impact degree distribution obtained as a result of a single knockout. Importantly, our proposed approach is also applicable to multiple knockouts. The comparisons between theoretical predictions and numerical results using real-world metabolic networks demonstrate the validity of the modeling based on random family forests for estimating the impact degree distributions resulting from the knockout of multiple reactions.

Keywords: Metabolic network; Branching process; Cascading failure (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113005864
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:21:p:5525-5535

DOI: 10.1016/j.physa.2013.07.003

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:392:y:2013:i:21:p:5525-5535