Space–time fractional diffusion equations and asymptotic behaviors of a coupled continuous time random walk model
Long Shi,
Zuguo Yu,
Zhi Mao,
Aiguo Xiao and
Hailan Huang
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 23, 5801-5807
Abstract:
In this paper, we consider a type of continuous time random walk model where the jump length is correlated with the waiting time. The asymptotic behaviors of the coupled jump probability density function in the Fourier–Laplace domain are discussed. The corresponding fractional diffusion equations are derived from the given asymptotic behaviors. Corresponding to the asymptotic behaviors of the joint probability density function in the Fourier–Laplace space, the asymptotic behaviors of the waiting time probability density and the conditional probability density for jump length are also discussed.
Keywords: Space–time fractional diffusion equation; Caputo fractional derivative; Riesz fractional derivative; Coupled continuous time random walk; Asymptotic behavior (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113007504
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:23:p:5801-5807
DOI: 10.1016/j.physa.2013.08.021
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().