Autoregressive conditional duration as a model for financial market crashes prediction
Vladimir Pyrlik ()
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 23, 6041-6051
Abstract:
There is an increasing number of studies showing that financial market crashes can be detected and predicted. The main aim of the research was to develop a technique for crashes prediction based on the analysis of durations between sequent crashes of a certain magnitude of Dow Jones Industrial Average. We have found significant autocorrelation in the series of durations between sequent crashes and suggest autoregressive conditional duration models (ACD) to forecast the crashes. We apply the rolling intervals technique in the sample of more than 400 DJIA crashes in 1896–2011 and repeatedly use the data on 100 sequent crashes to estimate a family of ACD models and calculate forecasts of the one following crash. It appears that the ACD models provide significant predictive power when combined with the inter-event waiting time technique. This suggests that despite the high quality of retrospective predictions, using the technique for real-time forecasting seems rather ineffective, as in the case of every particular crash the specification of the ACD model, which would provide the best quality prediction, is rather hard to identify.
Keywords: Dow Jones Industrial Average; Inter-event waiting time; Forecasting; ACD (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113007036
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:23:p:6041-6051
DOI: 10.1016/j.physa.2013.07.072
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().