A finite-dimensional quantum model for the stock market
Liviu-Adrian Cotfas
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 2, 371-380
Abstract:
We present a finite-dimensional version of the quantum model for the stock market proposed in C. Zhang and L. Huang [A quantum model for the stock market, Physica A 389 (2010) 5769]. Our approach is an attempt to make this model consistent with the discrete nature of the stock price and is based on the mathematical formalism used in the case of the quantum systems with finite-dimensional Hilbert space. The rate of return is a discrete variable corresponding to the coordinate in the case of quantum systems, and the operator of the conjugate variable describing the trend of the stock return is defined in terms of the finite Fourier transform. The stock return in equilibrium is described by a finite Gaussian function, and the time evolution of the stock price, directly related to the rate of return, is obtained by numerically solving a Schrödinger type equation.
Keywords: Econophysics; Quantum finance; Finite quantum systems (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112008448
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:2:p:371-380
DOI: 10.1016/j.physa.2012.09.010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().