Strength statistics and the distribution of earthquake interevent times
Dionissios T. Hristopulos and
Vasiliki Mouslopoulou
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 3, 485-496
Abstract:
The Weibull distribution is often used to model the earthquake interevent times distribution (ITD). We propose a link between the earthquake ITD on single faults with the Earth’s crustal shear strength distribution by means of a phenomenological stick–slip model. For single faults or fault systems with homogeneous strength statistics and power-law stress accumulation we obtain the Weibull ITD. We prove that the moduli of the interevent times and crustal shear strength are linearly related, while the time scale is an algebraic function of the scale of crustal shear strength. We also show that logarithmic stress accumulation leads to the log-Weibull ITD. We investigate deviations of the ITD tails from the Weibull model due to sampling bias, magnitude cutoff thresholds, and non-homogeneous strength parameters. Assuming the Gutenberg–Richter law and independence of the Weibull modulus on the magnitude threshold, we deduce that the interevent time scale drops exponentially with the magnitude threshold. We demonstrate that a microearthquake sequence from the island of Crete and a seismic sequence from Southern California conform reasonably well to the Weibull model.
Keywords: Brittle fracture; Waiting times; Extreme events; Tail behavior; Earthquake (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711200845X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:3:p:485-496
DOI: 10.1016/j.physa.2012.09.011
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().