Bivelocity hydrodynamics. Diffuse mass flux vs. diffuse volume flux
Howard Brenner
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 4, 558-566
Abstract:
An intimate physical connection exists between a fluid’s mass and its volume, with the density ρ serving as a proportionality factor relating these two extensive thermodynamic properties when the fluid is homogeneous. This linkage has led to the erroneous belief among many researchers that a fluid’s diffusive (dissipative) mass flux and its diffusive volume flux counterpart, both occurring in inhomogeneous fluids undergoing transport are, in fact, synonymous. However, the existence of a truly dissipative mass flux (that is, a mass flux that is physically dissipative) has recently and convincingly been shown to be a physical impossibility [H.C. Öttinger, H. Struchtrup, M. Liu, On the impossibility of a dissipative contribution to the mass flux in hydrodynamics, Phys. Rev. E 80 (2009) 056303], owing, among other things, to its violation of the principle of angular momentum conservation. Unfortunately, as a consequence of the erroneous belief in the equality of the diffuse volume and mass fluxes (sans an algebraic sign), this has led many researchers to wrongly conclude that a diffuse volume flux is equally impossible. As a consequence, owing to the fundamental role played by the diffuse volume flux in the theory of bivelocity hydrodynamics [H. Brenner, Beyond Navier–Stokes, Int. J. Eng. Sci. 54 (2012) 67–98], many researchers have been led to falsely dismiss, without due consideration, the possibility of bivelocity hydrodynamics constituting a potentially viable physical theory, which it is believed to be. The present paper corrects this misconception by using a simple concrete example involving an isothermal rotating rigid-body fluid motion to clearly confirm that whereas a diffuse mass flux is indeed impossible, this fact does not exclude the possible existence of a diffuse volume flux and, concomitantly, the possibility that bivelocity hydrodynamics is indeed a potentially viable branch of fluid mechanics.
Keywords: Bivelocity hydrodynamics; Diffuse mass flux; Diffuse volume flux (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112008473
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:4:p:558-566
DOI: 10.1016/j.physa.2012.09.013
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().