Variational methods for time-dependent classical many-particle systems
Yuriy V. Sereda and
Peter J. Ortoleva
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 4, 628-638
Abstract:
A variational method for the classical Liouville equation is introduced that facilitates the development of theories for non-equilibrium classical systems. The method is based on the introduction of a complex-valued auxiliary quantity Ψ that is related to the classical position-momentum probability density ρ via ρ=Ψ∗Ψ. A functional of Ψ is developed whose extrema imply that ρ satisfies the Liouville equation. Multiscale methods are used to develop trial functions to be optimized by the variational principle. The present variational principle with multiscale trial functions can capture both the microscopic and the coarse-grained descriptions, thereby yielding theories that account for the two way exchange of information across multiple scales in space and time. Equations of the Smoluchowski form for the coarse-grained state probability density are obtained. Constraints on the initial state of the N-particle probability density for which the aforementioned equation is closed and conserves probability are presented. The methodology has applicability to a wide range of systems including macromolecular assemblies, ionic liquids, and nanoparticles.
Keywords: Variational principle; Multiscale analysis; Non-equilibrium systems; N-particle probability density; Liouville equation; Coarse-grained variables (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112008850
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:4:p:628-638
DOI: 10.1016/j.physa.2012.10.005
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().