Residual entropy of ice nanotubes and ice layers
Mikhail V. Kirov
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 4, 680-688
Abstract:
A relatively simple algorithm is presented for the complete enumeration of all H-bond networks in finite fragments of ice nanotubes and ice layers with periodic boundary conditions. This algorithm is based on the well-known transfer matrix method and it includes a convenient procedure for calculation of the elements of transfer matrices themselves. To facilitate this, it is necessary to specify only very small local matrices of sizes 2×2 or 4×4. We present exhaustive statistics of H-bonds arrangements for finite-size zigzag- and armchair-like ice nanotubes, for the fragments of hexagonal monolayer and bilayer and also for ice nanotubes consisting of stacked n-membered rings. Using the new algorithm, we have also calculated the specific residual entropy for the infinite two-dimensional lattices. The agreement with the well-known solution for a square ice model demonstrates the reliability of the obtained results.
Keywords: Residual entropy; Transfer-matrix method; Nanotubes; Ice layer (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112009557
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:4:p:680-688
DOI: 10.1016/j.physa.2012.10.041
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().