Position space renormalization group study of the spin-1 random semi-infinite Blume–Capel model
Mohammed El Bouziani,
Abou Gaye and
Ahmed Jellal
Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 4, 689-701
Abstract:
We study the spin-1 Blume–Capel model under a random crystal field in the tridimensional semi-infinite case. This has been done by using the real-space renormalization group approximation and specifically the Migdal–Kadanoff technique. Interesting results are obtained, which tell us that the randomness destroys the first order phase transitions and only those of the second order occur. We give the list of nine fixed points and their topology describing the surface critical behavior. Five new types of phase diagram are found with a rich variety of phase transitions, in accordance with the values of the bulk and surface probabilities and the ratios linking bulk and surface interactions.
Keywords: Semi-infinite; Surface transitions; Blume–Capel; Random crystal field; Phase diagrams; Renormalization group (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112008874
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:4:p:689-701
DOI: 10.1016/j.physa.2012.10.007
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().