EconPapers    
Economics at your fingertips  
 

Approximate tolerance limits for Zipf–Mandelbrot distributions

D.S. Young

Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 7, 1702-1711

Abstract: Zipf–Mandelbrot distributions are commonly used to model natural phenomena where the frequency of an event’s occurrence is inversely proportional to its rank based on that frequency of occurrence. This discrete distribution typically exhibits a large number of rare events; however, it may be of interest to obtain reasonable limits that bound the majority of the number of different events. We propose the use of statistical tolerance limits as a way to quantify such a bound. The tolerance limits are constructed using Wald confidence limits for the Zipf–Mandelbrot parameters and are shown through a simulation study to have coverage probabilities near the nominal levels. We also calculate Zipf–Mandelbrot tolerance limits for two real datasets and discuss the associated computer code developed for the R programming language.

Keywords: Coverage probabilities; Fractal structure; King effect; Tolerance package; Zeta distribution (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437112010497
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:7:p:1702-1711

DOI: 10.1016/j.physa.2012.11.056

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:392:y:2013:i:7:p:1702-1711