EconPapers    
Economics at your fingertips  
 

Phase diagram of mechanically stretched DNA: The salt effect

Amar Singh and Navin Singh

Physica A: Statistical Mechanics and its Applications, 2013, vol. 392, issue 9, 2052-2059

Abstract: The cations, in the form of salt, present in a solution containing DNA play a crucial role in the opening of the two strands of DNA. We use a simple non-linear model and investigate the role of these cations on the mechanical unzipping of DNA. The Hamiltonian is modified to incorporate the solvent effect and the presence of these cations in the solution. We calculate the melting temperature as well as the critical force that is required to unzip the DNA molecule as a function of salt concentration of the solution. The phase diagrams are found to be in close agreement with the experimental phase diagrams.

Keywords: DNA unzipping; Denaturation; Phase diagram (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113000630
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:392:y:2013:i:9:p:2052-2059

DOI: 10.1016/j.physa.2013.01.029

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:392:y:2013:i:9:p:2052-2059