Born’s formula from statistical mechanics of classical fields and theory of hitting times
Andrei Khrennikov
Physica A: Statistical Mechanics and its Applications, 2014, vol. 393, issue C, 207-221
Abstract:
We consider Brownian motion in the space of fields and show that such a random field interacting with threshold type detectors produces clicks at random moments of time. The corresponding probability distribution can be approximately described by the same mathematical formalism as is used in quantum mechanics, theory of Hermitian operators in complex Hilbert space. The temporal structure of the “prequantum random field” which is the L2-valued Wiener process plays the crucial role. Moments of detector’s clicks are mathematically described as hitting times which are actively used in classical theory of stochastic processes. Born’s formula appears as an approximate formula. In principle, the difference between the formula derived in this paper and the conventional Born’s formula can be tested experimentally. In our model the presence of the random gain in detectors plays a crucial role. We also stress the role of the detection threshold which is not merely a technicality, but the fundamental element of the model.
Keywords: Random fields; Quantum probability of detection; Derivation of Born’s formula; Threshold detectors; Asymptotics of error function; Distribution of hitting times (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711300839X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:393:y:2014:i:c:p:207-221
DOI: 10.1016/j.physa.2013.09.009
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().