Why credit risk markets are predestined for exhibiting log-periodic power law structures
Jan Henrik Wosnitza and
Jens Leker
Physica A: Statistical Mechanics and its Applications, 2014, vol. 393, issue C, 427-449
Abstract:
Recent research has established the existence of log-periodic power law (LPPL) patterns in financial institutions’ credit default swap (CDS) spreads. The main purpose of this paper is to clarify why credit risk markets are predestined for exhibiting LPPL structures. To this end, the credit risk prediction of two variants of logistic regression, i.e. polynomial logistic regression (PLR) and kernel logistic regression (KLR), are firstly compared to the standard logistic regression (SLR). In doing so, the question whether the performances of rating systems based on balance sheet ratios can be improved by nonlinear transformations of the explanatory variables is resolved. Building on the result that nonlinear balance sheet ratio transformations hardly improve the SLR’s predictive power in our case, we secondly compare the classification performance of a multivariate SLR to the discriminative powers of probabilities of default derived from three different capital market data, namely bonds, CDSs, and stocks. Benefiting from the prompt inclusion of relevant information, the capital market data in general and CDSs in particular increasingly outperform the SLR while approaching the time of the credit event. Due to the higher classification performances, it seems plausible for creditors to align their investment decisions with capital market-based default indicators, i.e., to imitate the aggregate opinion of the market participants. Since imitation is considered to be the source of LPPL structures in financial time series, it is highly plausible to scan CDS spread developments for LPPL patterns. By establishing LPPL patterns in governmental CDS spread trajectories of some European crisis countries, the LPPL’s application to credit risk markets is extended. This novel piece of evidence further strengthens the claim that credit risk markets are adequate breeding grounds for LPPL patterns.
Keywords: Default prediction; Logistic regression; Polynomial logistic regression; Kernel logistic regression; Credit default swaps; Log-periodic power law (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113008224
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:393:y:2014:i:c:p:427-449
DOI: 10.1016/j.physa.2013.08.072
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().