EconPapers    
Economics at your fingertips  
 

The predictive power of singular value decomposition entropy for stock market dynamics

Petre Caraiani

Physica A: Statistical Mechanics and its Applications, 2014, vol. 393, issue C, 571-578

Abstract: We use a correlation-based approach to analyze financial data from the US stock market, both daily and monthly observations from the Dow Jones. We compute the entropy based on the singular value decomposition of the correlation matrix for the components of the Dow Jones Industrial Index. Based on a moving window, we derive time varying measures of entropy for both daily and monthly data. We find that the entropy has a predictive ability with respect to stock market dynamics as indicated by the Granger causality tests.

Keywords: Correlations matrices; Stock market; Singular value decomposition; Entropy (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113008212
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:393:y:2014:i:c:p:571-578

DOI: 10.1016/j.physa.2013.08.071

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:393:y:2014:i:c:p:571-578