Weighting links based on edge centrality for community detection
Peng Gang Sun
Physica A: Statistical Mechanics and its Applications, 2014, vol. 394, issue C, 346-357
Abstract:
Link weights have the equally important position as links in complex networks, and they are closely associated with each other for the emergence of communities. How to assign link weights to make a clear distinction between internal links of communities and external links connecting communities is of vital importance for community detection. Edge centralities provide a powerful approach for distinguishing internal links from external ones. Here, we first use edge centralities such as betweenness, information centrality and edge clustering coefficient to weight links of networks respectively to transform unweighted networks into weighted ones, and then a weighted function that both considers links and link weights is adopted on the weighted networks for community detection. We evaluate the performance of our approach on random networks as well as real-world networks. Better results are achieved on weighted networks with stronger weights of internal links of communities, and the results on unweighted networks outperform that of weighted networks with weaker weights of internal links of communities. The availability of our findings is also well-supported by the study of Granovetter that the weak links maintain the global integrity of the network while the strong links maintain the communities. Especially in the Karate club network, all the nodes are correctly classified when we weight links by edge betweenness. The results also give us a more comprehensive understanding on the correlation between links and link weights for community detection.
Keywords: Community; Edge centrality; Weighted function (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711300798X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:394:y:2014:i:c:p:346-357
DOI: 10.1016/j.physa.2013.08.048
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().