Income distribution: An adaptive heterogeneous model
L.C. da Silva and
P.H. de Figueirêdo
Physica A: Statistical Mechanics and its Applications, 2014, vol. 395, issue C, 275-282
Abstract:
In this communication an adaptive process is introduced into a many-agent model for closed economic system in order to establish general features of income distribution. In this new version agents are able to modify their exchange parameter ωi of resources through an adaptive process. The conclusions indicate that assuming an instantaneous learning behavior of all agents a Γ-distribution for income is reproduced while a frozen behavior establishes a Pareto’s distribution for income with an exponent ν=0.94±0.02. A third case occurs when a heterogeneous “inertia” behavior is introduced leading us to a Γ-distribution at the low income regime and a power-law decay for the large income values with an exponent ν=2.05±0.05. This method enables investigation of the resources flux in the economic environment and produces also bounding values for the Gini index comparable with data evidences.
Keywords: Econophysics; Income distribution; Stochastic process (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113009424
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:395:y:2014:i:c:p:275-282
DOI: 10.1016/j.physa.2013.09.065
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().