Unfolding of the spectrum for chaotic and mixed systems
Ashraf A. Abul-Magd and
Adel Y. Abul-Magd
Physica A: Statistical Mechanics and its Applications, 2014, vol. 396, issue C, 185-194
Abstract:
Random Matrix Theory (RMT) is capable of making predictions for the spectral fluctuations of a physical system only after removing the influence of the level density by unfolding the spectra. When the level density is known, unfolding is done by using the integrated level density to transform the eigenvalues into dimensionless variables with unit mean spacing. When it is not known, as in most practical cases, one usually approximates the level staircase function by a polynomial. We here study the effect of unfolding procedure on the spectral fluctuation of two systems for which the level density is known asymptotically. The first is a time-reversal-invariant chaotic system, which is modeled in RMT by a Gaussian Orthogonal Ensemble (GOE). The second is the case of chaotic systems in which m quantum numbers remain almost undistorted in the early stage of the stochastic transition. The Hamiltonian of a system may be represented by a block diagonal matrix with m blocks of the same size, in which each block is a GOE. Unfolding is done once by using the asymptotic level densities for the eigenvalues of the m blocks and once by representing the integrated level density in terms of polynomials of different orders. We find that the spacing distribution of the eigenvalues shows a little sensitivity to the unfolding method. On the other hand, the variance of level number Σ2(L) is sensitive to the choice of the unfolding function. Unfolding that utilizes low order polynomials enhances Σ2(L) relative to the theoretical value, while the use of high order polynomial reduces it. The optimal value of the order of the unfolding polynomial depends on the dimension of the corresponding ensemble.
Keywords: Random-matrix theory; Unfolding of spectra; Mixed systems; Spacing distribution; Level number variance; Level density (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113010546
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:396:y:2014:i:c:p:185-194
DOI: 10.1016/j.physa.2013.11.012
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().