EconPapers    
Economics at your fingertips  
 

The Sherrington–Kirkpatrick spin glass model in the presence of a random field with a joint Gaussian probability density function for the exchange interactions and random fields

Ioannis A. Hadjiagapiou

Physica A: Statistical Mechanics and its Applications, 2014, vol. 397, issue C, 1-16

Abstract: The magnetic systems with disorder form an important class of systems, which are under intensive studies, since they reflect real systems. Such a class of systems is the spin glass one, which combines randomness and frustration. The Sherrington–Kirkpatrick Ising spin glass with random couplings in the presence of a random magnetic field is investigated in detail within the framework of the replica method. The two random variables (exchange integral interaction and random magnetic field) are drawn from a joint Gaussian probability density function characterized by a correlation coefficient ρ. The thermodynamic properties and phase diagrams are studied with respect to the natural parameters of both random components of the system contained in the probability density. The de Almeida–Thouless line is explored as a function of temperature, ρ and other system parameters. The entropy for zero temperature as well as for non zero temperatures is partly negative or positive, acquiring positive branches as h0 increases.

Keywords: Ising model; Spin glass; Frustration; Replica method; Random field; Gaussian probability density (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113011047
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:397:y:2014:i:c:p:1-16

DOI: 10.1016/j.physa.2013.12.002

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:397:y:2014:i:c:p:1-16