Modeling correlated human dynamics with temporal preference
Peng Wang,
Tao Zhou,
Xiao-Pu Han and
Bing-Hong Wang
Physica A: Statistical Mechanics and its Applications, 2014, vol. 398, issue C, 145-151
Abstract:
We empirically study the activity pattern of individual blog-posting and observe the interevent time distributions decay as power-laws at both individual and population level. As different from previous studies, we find significant short-term memory in it. Moreover, the memory coefficient first decays in a power law and then turns to an exponential form. Our findings produce evidence for the strong short-term memory in human dynamics and challenge previous models. Accordingly, we propose a simple model based on temporal preference, which can well reproduce both the heavy-tailed nature and the strong memory effects. This work helps in understanding the temporal regularities of online human behaviors.
Keywords: Interevent time distribution; Power-law; Human dynamics (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113011370
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:398:y:2014:i:c:p:145-151
DOI: 10.1016/j.physa.2013.12.014
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().