Fractal behavior in the headway fluctuation simulated by the NaSch model
H.B. Zhu and
J.B. Gao
Physica A: Statistical Mechanics and its Applications, 2014, vol. 398, issue C, 187-193
Abstract:
The fractal behavior of traffic flow is studied by the adaptive fractal analysis method on the basis of the vehicle headway time series, which are obtained from the numerical simulation of the NaSch model. We find that the vehicle headway time series has a fractal behavior that is similar to the standard Brownian motion (BM) over a wide range of scales when the density is low. As the density increases well-defined sharp spectral peaks, corresponding to the stop-and-go waves, appear while the scale range showing BM-like behavior rapidly shrinks. In the high density regime, a new type of fractal behavior with long-range correlations appears, accompanying the worsening of traffic congestions. The underlying dynamics of traffic flow is analyzed, and some meaningful results are obtained.
Keywords: Traffic flow; Adaptive fractal analysis; Power-law fluctuation; Stop-and-go waves; Traffic congestion (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113011576
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:398:y:2014:i:c:p:187-193
DOI: 10.1016/j.physa.2013.12.033
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().