Electron dynamics in nanoscale transistors by means of Wigner and Boltzmann approaches
J.M. Sellier,
S.M. Amoroso,
M. Nedjalkov,
S. Selberherr,
A. Asenov and
I. Dimov
Physica A: Statistical Mechanics and its Applications, 2014, vol. 398, issue C, 194-198
Abstract:
We present a numerical study of the evolution of a wave packet in a nanoscale MOSFET featuring an ‘atomistic’ channel doping. Our two-dimensional Monte Carlo Wigner simulation results are compared against classical Boltzmann simulation results. We show that the quantum effects due to the presence of a scattering center are manifestly non-local affecting the wave propagation much farther than the geometric limit of the center. In particular the part of the channel close to the oxide interface remains blocked for transport, in contrast to the behavior predicted by classical Boltzmann propagation.
Keywords: Full quantum transport; Wigner equation; Boltzmann equation; Monte Carlo methods; Nanometer scaled devices; Single dopants (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437113011862
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:398:y:2014:i:c:p:194-198
DOI: 10.1016/j.physa.2013.12.045
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().