EconPapers    
Economics at your fingertips  
 

Universality in the distance between two teams in a football tournament

Roberto da Silva and Silvio R. Dahmen

Physica A: Statistical Mechanics and its Applications, 2014, vol. 398, issue C, 56-64

Abstract: Is football (soccer) a universal sport? Beyond the question of geographical distribution, where the answer is most certainly yes, when looked at from a mathematical viewpoint the scoring process during a match can be thought of, in a first approximation, as being modeled by a Poisson distribution. Recently, it was shown that the scoring of real tournaments can be reproduced by means of an agent-based model (da Silva et al. (2013) [24]) based on two simple hypotheses: (i) the ability of a team to win a match is given by the rate of a Poisson distribution that governs its scoring during a match; and (ii) such ability evolves over time according to results of previous matches. In this article we are interested in the question of whether the time series represented by the scores of teams have universal properties. For this purpose we define a distance between two teams as the square root of the sum of squares of the score differences between teams over all rounds in a double-round-robin-system and study how this distance evolves over time. Our results suggest a universal distance distribution of tournaments of different major leagues which is better characterized by an exponentially modified Gaussian (EMG). This result is corroborated by our agent-based model.

Keywords: Football statistics; Stochastic process; Fitting and universality (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711301131X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:398:y:2014:i:c:p:56-64

DOI: 10.1016/j.physa.2013.12.008

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:398:y:2014:i:c:p:56-64