EconPapers    
Economics at your fingertips  
 

Moral foundations in an interacting neural networks society: A statistical mechanics analysis

R. Vicente, A. Susemihl, J.P. Jericó and N. Caticha

Physica A: Statistical Mechanics and its Applications, 2014, vol. 400, issue C, 124-138

Abstract: The moral foundations theory supports that people, across cultures, tend to consider a small number of dimensions when classifying issues on a moral basis. The data also show that the statistics of weights attributed to each moral dimension is related to self-declared political affiliation, which in turn has been connected to cognitive learning styles by the recent literature in neuroscience and psychology. Inspired by these data, we propose a simple statistical mechanics model with interacting neural networks classifying vectors and learning from members of their social neighbourhood about their average opinion on a large set of issues. The purpose of learning is to reduce dissension among agents when disagreeing. We consider a family of learning algorithms parametrized by δ, that represents the importance given to corroborating (same sign) opinions. We define an order parameter that quantifies the diversity of opinions in a group with homogeneous learning style. Using Monte Carlo simulations and a mean field approximation we find the relation between the order parameter and the learning parameter δ at a temperature we associate with the importance of social influence in a given group. In concordance with data, groups that rely more strongly on corroborating evidence sustain less opinion diversity. We discuss predictions of the model and propose possible experimental tests.

Keywords: Sociophysics; Social interactions; Opinion dynamics; Neural networks; Moral foundations theory (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711400017X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:400:y:2014:i:c:p:124-138

DOI: 10.1016/j.physa.2014.01.013

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:400:y:2014:i:c:p:124-138