Thermodynamical properties of the mixed spin transverse Ising model with four-spin interactions
M. Ghliyem,
N. Benayad and
M. Azhari
Physica A: Statistical Mechanics and its Applications, 2014, vol. 402, issue C, 14-29
Abstract:
The thermodynamical properties of the mixed spin transverse Ising system consisting of spin-1/2 and spin-1 with four-spin interactions are studied within the frame work of the finite cluster approximation based on single-site cluster theory. In this approach, the state equations are derived for the two-dimensional square lattice. In addition to the phase diagrams which show qualitatively interesting features (variety of transitions and tricritical behaviour), we find some characteristic behaviours of the longitudinal and transverse sublattice magnetizations. In particular, the gap of the longitudinal magnetization at first order transition decreases with increasing values of the transverse field. Moreover, the effects of the transverse field on the internal energy and the specific heat are also investigated.
Keywords: Mixed spin; Four-spin interactions; Transverse field; Thermodynamical properties (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843711400034X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:402:y:2014:i:c:p:14-29
DOI: 10.1016/j.physa.2014.01.023
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().