Network skeleton for synchronization: Identifying redundant connections
Cheng-Jun Zhang and
An Zeng
Physica A: Statistical Mechanics and its Applications, 2014, vol. 402, issue C, 180-185
Abstract:
Synchronization is an important dynamical process on complex networks with wide applications. In this paper, we design a greedy link removal algorithm and find that many links in networks are actually redundant for synchronization, i.e. the synchronizability of the network is hardly affected if these links are removed. Our analysis shows that homogeneous networks generally have more redundant links than heterogeneous networks. We denote the reduced network with the minimum number of links to preserve synchronizability (eigenratio of the Laplacian matrix) of the original network as the synchronization backbone. Simulating the Kuramoto model, we confirm that the network synchronizability is effectively preserved in the backbone. Moreover, the topological properties of the original network and backbone are compared in detail.
Keywords: Synchronization; Backbone structure; Complex networks (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114000934
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:402:y:2014:i:c:p:180-185
DOI: 10.1016/j.physa.2014.02.002
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().