Novel heuristic density-based method for community detection in networks
Maoguo Gong,
Jie Liu,
Lijia Ma,
Qing Cai and
Licheng Jiao
Physica A: Statistical Mechanics and its Applications, 2014, vol. 403, issue C, 71-84
Abstract:
Recent years have witnessed a growing recognition on the community detection in networks. Diverse techniques have been devoted to uncovering community structures in complex networks and amongst which are the density-based methods. Density-based avenues are very popular in data clustering field. They rely on two parameters which are utilized by us to process the community detection problem. In this paper, a novel view to look deep into the network structure from the community level is tested and a heuristic density-based approach for community detection is put forward. In the proposed method, firstly, both of the two parameters are under consideration and all the possible parameter pairs are exploited. These parameter pairs produce all kinds of partitions through the classic method. Secondly, these partitions are processed by our proposed strategy consisting of classification, mergence, decomposition and recombination. After employing the proposed strategy, a community division with high quality is uncovered. Experiments on both synthetic and real-world networks demonstrate the effectiveness of the proposed method.
Keywords: Community detection; Density-based clustering; Optimization (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114000557
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:403:y:2014:i:c:p:71-84
DOI: 10.1016/j.physa.2014.01.043
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().