Analysis of diffusion and trapping efficiency for random walks on non-fractal scale-free trees
Junhao Peng,
Jian Xiong and
Guoai Xu
Physica A: Statistical Mechanics and its Applications, 2014, vol. 407, issue C, 231-244
Abstract:
In this paper, the discrete random walks on the recursive non-fractal scale-free trees (NFSFT) are studied, and a kind of method to calculate the analytic solutions of the mean first-passage time (MFPT) for any pair of nodes, the mean trapping time (MTT) for any target node and mean diffusing time (MDT) for any starting node are proposed. Furthermore, we compare the trapping efficiency and diffusion efficiency between any two nodes of NFSFT by using the MTT and the MDT as the measures of trapping efficiency and diffusion efficiency respectively, and find the best (or worst) trapping sites and the best (or worst) diffusion sites. The results show that the two hubs of NFSFT are not only the best trapping site but also the worst diffusion site, and that the nodes which are the farthest nodes from the two hubs are not only the worst trapping sites but also the best diffusion sites. Furthermore, we find that the ratio between the maximum and minimum of MTT grows logarithmically with network order, but the ratio between the maximum and minimum of MDT is almost equal to 1. The results imply that the trap’s position has great effect on the trapping efficiency, but the position of starting node has little effect on diffusion efficiency. Finally, the simulation for random walks on NFSFT is done, and it is consistent with the derived results.
Keywords: MFPT; MTT; MDT (search for similar items in EconPapers)
Date: 2014
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114003288
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:407:y:2014:i:c:p:231-244
DOI: 10.1016/j.physa.2014.04.017
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().