Bayesian non-parametric approaches to reconstructing oscillatory systems and the Nyquist limit
Justina Žurauskienė,
Paul Kirk,
Thomas Thorne and
Michael P.H. Stumpf
Physica A: Statistical Mechanics and its Applications, 2014, vol. 407, issue C, 33-42
Abstract:
Reconstructing continuous signals from discrete time-points is a challenging inverse problem encountered in many scientific and engineering applications. For oscillatory signals classical results due to Nyquist set the limit below which it becomes impossible to reliably reconstruct the oscillation dynamics. Here we revisit this problem for vector-valued outputs and apply Bayesian non-parametric approaches in order to solve the function estimation problem. The main aim of the current paper is to map how we can use of correlations among different outputs to reconstruct signals at a sampling rate that lies below the Nyquist rate. We show that it is possible to use multiple-output Gaussian processes to capture dependences between outputs which facilitate reconstruction of signals in situation where conventional Gaussian processes (i.e. this aimed at describing scalar signals) fail, and we delineate the phase and frequency dependence of the reliability of this type of approach. In addition to simple toy-models we also consider the dynamics of the tumour suppressor gene p53, which exhibits oscillations under physiological conditions, and which can be reconstructed more reliably in our new framework.
Keywords: Gaussian processes; Multiple-output Gaussian processes; Oscillating systems; Nyquist limit (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114002714
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:407:y:2014:i:c:p:33-42
DOI: 10.1016/j.physa.2014.03.069
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().