A κ-deformed model of growing complex networks with fitness
Massimo Stella and
Markus Brede
Physica A: Statistical Mechanics and its Applications, 2014, vol. 407, issue C, 360-368
Abstract:
The Barabási–Bianconi (BB) fitness model can be solved by a mapping between the original network growth model to an idealized bosonic gas. The well-known transition to Bose–Einstein condensation in the latter then corresponds to the emergence of “super-hubs” in the network model. Motivated by the preservation of the scale-free property, thermodynamic stability and self-duality, we generalize the original extensive mapping of the BB fitness model by using the nonextensive Kaniadakis κ-distribution. Through numerical simulation and mean-field calculations we show that deviations from extensivity do not compromise qualitative features of the phase transition. Analysis of the critical temperature yields a monotonically decreasing dependence on the nonextensive parameter κ.
Keywords: Complex networks; Bose–Einstein condensation; Growing networks; Nonextensive statistics (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114003136
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:407:y:2014:i:c:p:360-368
DOI: 10.1016/j.physa.2014.04.009
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().