Short note on the emergence of fractional kinetics
Gianni Pagnini
Physica A: Statistical Mechanics and its Applications, 2014, vol. 409, issue C, 29-34
Abstract:
In the present Short Note an idea is proposed to explain the emergence and the observation of processes in complex media that are driven by fractional non-Markovian master equations. Particle trajectories are assumed to be solely Markovian and described by the Continuous Time Random Walk model. But, as a consequence of the complexity of the medium, each trajectory is supposed to scale in time according to a particular random timescale. The link from this framework to microscopic dynamics is discussed and the distribution of timescales is computed. In particular, when a stationary distribution is considered, the timescale distribution is uniquely determined as a function related to the fundamental solution of the space–time fractional diffusion equation. In contrast, when the non-stationary case is considered, the timescale distribution is no longer unique. Two distributions are here computed: one related to the M-Wright/Mainardi function, which is Green’s function of the time-fractional diffusion equation, and another related to the Mittag-Leffler function, which is the solution of the fractional-relaxation equation.
Keywords: Fractional kinetics; Continuous Time Random Walk; Superposition; Mittag-Leffler function; M-Wright/Mainardi function (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114002908
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:409:y:2014:i:c:p:29-34
DOI: 10.1016/j.physa.2014.03.079
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().