Network formation by contact arrested propagation
Andreas Hafver,
Espen Jettestuen,
Jan M. Baetens and
Anders Malthe-Sørenssen
Physica A: Statistical Mechanics and its Applications, 2014, vol. 413, issue C, 240-255
Abstract:
We propose here a network growth model which we term Contact Arrested Propagation (CAP). One representation of the CAP model comprises a set of two-dimensional line segments on a lattice, propagating independently at constant speed in both directions until they collide. The generic form of the model extends to arbitrary networks, and, in particular, to three-dimensional lattices, where it may be realised as a set of expanding planes, halted upon intersection. The model is implemented as a simple and completely background independent substitution system.
Keywords: Networks; Fracturing; Fragmentation; Percolation; Cellular automata; Substitution systems (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437114005718
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:413:y:2014:i:c:p:240-255
DOI: 10.1016/j.physa.2014.07.006
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().